基于数据降维和深度学习的化工故障识别 

刘子健, 贾旭清, 张士发, 田文德

控制工程 ›› 2021, Vol. 28 ›› Issue (10) : 2005-2011.

控制工程 ›› 2021, Vol. 28 ›› Issue (10) : 2005-2011.

基于数据降维和深度学习的化工故障识别 

作者信息 +

Fault Identification of Chemical Processes Based on Data Dimensionality Reduction and Deep Learning

Author information +
文章历史 +

摘要

数据降维是化工过程故障识别的重要组成部分,主要分为特征提取和特征选择两种方法。为了探索不同数据降维方法对化工过程故障识别的影响,提出了基于数据降维和深度学习的故障识别方法。首先,生成拓扑映射(GTM)得到了原始过程数据的低维空间表示,通过 Spearman 秩相关系数(SRCC)得到了变量之间的相关性,获得了关键变量。然后,长短期记忆网络(LSTM)学习关键变量集的深层次特征并识别化工过程的故障。田纳西-伊斯曼(TE)过程的应用表明,GTM-LSTM 更适用于跃变型故障的识别,SRCC-LSTM 对所有类型的故障识别效果都较好,其更适用于化工过程数据降维。

Abstract

Data dimensionality reduction is an important part of chemical process fault identification. It includes two main methods: feature extraction and feature selection. The fault identification methods based on data dimensionality reduction and deep learning are proposed to explore the effects of different data dimensionality reduction methods on chemical process fault identification. First, the low-dimensional spatial representation of the original process data is obtained by generative topographic mapping (GTM), the correlation between variables is calculated by Spearman’s rank correlation coefficient (SRCC) and the key variables are thus obtained. Then, the deep-level features of the key variable set are learned by the Long Short-Term Memory Network (LSTM) to identify faults in the chemical process. The application of the Tennessee-Eastman (TE) process indicates that the GTM-LSTM is more suitable for the identification of step type faults, while the SRCC-LSTM has a good effect on all types of fault identification, therefore the latter is more suitable for data dimensionality reduction of chemical processes.

关键词

故障识别 / 特征提取 / 特征选择 / 化工过程 / 长短期记忆网络

Key words

Fault identification / feature extraction / feature selection / chemical process / long short-term memory

引用本文

导出引用
刘子健, 贾旭清, 张士发, 田文德. 基于数据降维和深度学习的化工故障识别 [J]. 控制工程, 2021, 28(10): 2005-2011
LIU Zi-jian, JIA Xu-qing, ZHANG Shi-fa, TIAN Wen-de . Fault Identification of Chemical Processes Based on Data Dimensionality Reduction and Deep Learning[J]. Control Engineering of China, 2021, 28(10): 2005-2011

2

Accesses

0

Citation

Detail

段落导航
相关文章

/